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Abstract: A transform coding data compression method is developed for the case of making es-
timates from data collected using two sensors.  We focus on the transfer of data from one sensor 
to another sensor, where the shared data is then used with the local data to estimate a parameter.  
Particular attention is paid to the case where neither sensor alone can estimate the parameter from 
its data.  The method uses an operational rate-distortion viewpoint together with a distortion 
measure based on the Fisher information of the estimation problem.  Explicit means of using the 
transformed data to compute operational measures of the Fisher information are given.  An inte-
ger optimization version of the Lagrange multiplier  method is used to efficiently determine the 
optimal operating point of the transform compression algorithm.   

The advantages of the method lie in its ability to use transform coding to effectively capture 
the impact of compression on estimation accuracy in a way that lends itself to efficient optimiza-
tion within the operational rate-distortion viewpoint.  The applicability and effectiveness of the 
method are demonstrated for two illustrative examples: (i) estimation of time-difference-of-
arrival (TDOA), and (ii) estimation of frequency-difference-of-arrival (FDOA).  In these two 
cases it is shown that the Fisher-information-based method outperforms the standard MSE ap-
proach.     
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I.  Introduction 

Often a single sensor can�t estimate a desired signal parameter (e.g., [1], [2]); even when it 

can, using data from other sensors can improve the estimate.  We focus on compression of data at 

one sensor (S1), which is then transmitted to a second node (S2) where it is used with the local 

data to estimate a single parameter; extension to multiple inferences is on-going [3].  A key to 

such compression problems is to use an inference-centric distortion measure such as Fisher in-

formation [14].  We assume a signal in AWGN model where the noises at the two sensors are 

independent � a simplifying but nonetheless useful scenario. In particular, work on compression 

for time/frequency-difference of arrival (TDOA/FDOA) systems goes back over two decades 

with limited success [5]-[7], and a better solution, even under simplifying assumptions, is useful.   

Compression methods can be developed either under a classical rate-distortion viewpoint [8] 

or an operational rate-distortion viewpoint [9].  The former strives to develop methods that are 

optimal on average.  The latter specifies a framework and optimizes its operating point for the 

particular signal at hand. Because a sensor system would likely operate in differing signal envi-

ronments, we focus on the operational viewpoint, which uses numerically-computed allocations 

of bits (see [9],[23]) rather than classical closed forms such as reverse water-filling (see [8]). 

We model the sensor data as a deterministic signal with deterministic parameter in AWGN.  

We compress data collected at S1 using no more than a budgeted R bits while making the estimate 

at S2 with the lowest possible mean-square estimation error.   We assume that the estimation proc-

essing and compression processing are not jointly designed � this is motivated by our belief that a 

sensor may likely be called on to provide data to other sensors or systems that are independently 

designed.     

Compression for distributed estimation has been considered in [11] � [20], which focus either 

on optimizing compression for (i) estimating the source signal [11],[12],[17],[18]  or on (ii) esti-

mating source parameters [13]-[16],[19],[20].  Many focus on only scalar quantization [11] - 
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[13],[15],[16],[20].  Others focus on more general compression structures [14],[17],[18],[19], al-

though, most of these ([14],[18],[19]) focus on establishing information theoretic results.  The 

closest to our approach are [15] and [16], which use FI but limit their designs to scalar quantizers.  

The result in [20] also limits its focus to scalar quantizers, but takes an quite different inference-

centric metric specific to the TDOA case.  In contrast, our approach considers transform-based 

compression with FI and our results show that proper choice of transform allows better exploita-

tion of the FI structure.   

II.  Algorithm Development 

Let the (real or complex) data vector x have a probability density function (PDF) p(x;θ) that 

is parameterized by θ, which is to be estimated.  The FI then is [10]  
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where the notational dependence on x is included to show the data set for which the FI is com-

puted.  Lossy compression changes the PDF and thus changes the FI.  We seek to retain the 

maximum FI in the compressed x�  while satisfying a bit budget R.  When the FI depends on θ, a 

question arises as to how to precisely characterize this desire to maximize the FI.  Thus, in gen-

eral, we propose a minimax approach.  Let );( xθJ  and )�;( xθJ be the FI of the original data x 

and the compressed data x� , respectively, and compress to R bits such that we satisfy 

[ ])�;();(maxmin
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JJ − , where the minimization is over all x�  that meet bit budget R.  

Clearly, when the FI does not depend on θ this becomes )�(max
�

x
x

J , on which we will focus.   

At sensor node Sk we model the received signal vectors xk as 

2,1,)( =+= kkkk wsx θ ,                                                  (2) 
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where )(θks  is an unknown deterministic vector dependent on the unknown deterministic scalar 

θ, and wk is a zero-mean, white Gaussian noise vector with w1 and w2 independent.  We assume 

the variance 2
1σ  of w1 is known or estimated.  For transform coding we use an orthonormal (ON) 

basis N
nn 1}{ =φ  with nχ  as the coefficients for 1x , and ON expansion conserves FI, so 

)()( 11 xχ JJ = .  Only those nχ  with significant contribution to the FI should be selected and 

quantized.  Let },,2,1{ NK⊂Ω  be a set of selection indices; let }|{ Ω∈= nbB n  be a set of bit 

allocations; let }|�{ Ω∈nnχ  be the selected/quantized coefficients using allocation B  .  The com-

pressed signal is  ∑ Ω∈
= n nnφx χ��1 ; grouping these coefficients into vector form gives 
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where )(1 θξ holds the selected noisy signal coefficients )(θξn , 1ω  holds the corresponding 

noise coefficients nω , and ε  is the quantization noise vector.  By independence 

)()�(),�( 2121 xxxx JJJ +=  so we need only maximize )�( 1xJ . We use a standard model for the 

quantization noise: white, uniformly distributed, zero mean, and independent of the sensor-noise 

vector ω1; independence is valid due to dithering by the sensor noise [21].  The variance of the 

sum of these two noises is the sum of their two variances.  But what PDF for 1�χ  should be used 

in (1)?  For quantization to 1 bit we use the ideas of [22] to get an explicit result; for multi-bit 

quantization, the derivation of the FI seems intractable [22] � we will motivate the use of a Gaus-

sian approximation. 

Consider that i
n

r
nn χjχχ ��� +=  is an element in 1�χ  that has been quantized to one bit.  Using the 

ideas of [22] gives that the FI of this quantized coefficient can be computed according to 
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where the superscript (1) indicates that this is for the 1-bit case and where 
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with kξ being the noise-free part of the unquantized coefficient kχ . 

For the multi-bit case, if }var{}var{ kkε ω<< , ν  in  (3) is approximately Gaussian, which  

follows from the relationship between their characteristic functions: )()()( fCfCfC εων = .  

Namely, if }var{}var{ kkε ω<< , the sinc function )( fCε  is approximately flat where the Gaus-

sian )( fCω  is significant.  Numerical results given in the Appendix indicate that the approxima-

tion is good at low SNR values (even for 2 bits) but gets worse at higher SNR values; note that 

our approximation is best at low SNR, where �every �ounce� counts�.  Then results for the FI for 

the complex Gaussian case (see (15.52) in [10]) give  

22
1

2

)(

)(2
)�(

n

n

n
m

q
χJ

+

∂
∂

=
σ

θ
θξ

.                                               (6) 

where (m) indicates �multi-bit� and 2
nq  is the variance of the nth element of the quantization noise.  

Establishing the exact form for 2
nq  is generally not possible and it is common to use an approxi-

mate model [9].  A widely used model is:  

nb
n XVarCq 22 2)( −××= ,                                                   (7) 

where C is a constant (often determined heuristically) that depends on the PDF of the random 

variable X [24].  We use small blocks of coefficients to estimate Var(X).  
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In the operational setting we evaluate (4) and (6) using the noisy coefficients in 1�χ .  Thus the 

distortion function we use on the nth coefficient quantized to bn bits is 
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and we seek a bit allocation set },,2,1|0{ NnbB n K∈≥=  that solves  
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Due to their efficiency, Lagrangian optimization methods are commonly used to determine the bit 

allocation in operational rate-distortion methods [9], [23] with an additive objective function like 

that in (9).  We use the algorithm developed in [23].      

An advantage of our approach is that once the functional form of the FI is found, it generally 

provides insight into the choice of a the transform.  For example, (as seen in Section III) when the 

parameter to be estimated is the delay between two signals, the FI depends on a specific band-

width measure, so a frequency domain transform makes sense in that case. 

We are particularly interested in problems where data must be shared between sensors be-

cause neither sensor can estimate the parameter by itself.  We call these types of problems �dual-

sensor-critical� problems.  Such problems often arise in passive systems due to lack of knowledge 

about a transmitted signal that has been perturbed by some parameter.  It is important to keep in 

mind that the real essence of FI is that it captures the sensitivity of the data to a change in the pa-

rameter; this is due to the derivative in the definition of FI in (1).  Thus, in a passive sensor set-

ting the data at one sensor may be very sensitive to the parameter (i.e., the FI is non-zero) yet you 

may still be unable to estimate the value of the parameter.  But with two sets of data (each having 

a different parameter value) you can estimate the difference in the two parameter values.  For ex-

ample, the data can be sensitive to a change in time delay but without a reference it is impossible 
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to estimate the delay.  What makes an active sensor problem different is that you have a known 

reference signal: estimation of the parameter�s change from the reference signal leads to estima-

tion of the actual value.  In a passive sensor scenario you often need the data at the other sensor to 

play the role of the reference.  Thus, to make our approach work we only need that the data at a 

sensor is sensitive to the parameter, and that is what the Fisher information in (8) assesses.   

III.  Example Applications 

We choose two examples (TDOA and FDOA estimation [1]) and illustrate (i) the effective-

ness of our method relative to MSE-driven methods, and (ii) how the form of the FI drives the 

choice of the transform.  We use cross correlation to estimate TDOA and FDOA [4].  The signal 

we use is a complex baseband FM signal with a pseudo-random modulating signal;  a sample 

spectrum is shown in Figure 1.  For each SNR and compression ratio (CR) of interest, we evalu-

ated the estimation error over 400 Monte Carlo runs.  We heuristically chose the value of C in (7) 

to be 23π=C , which gives good results in our simulations.  To focus on the capabilities of the 

transform coding we performed no entropy coding, which would likely provide further improve-

ment in the CR with no further accuracy degradation. 

 

Figure 1: The spectrum of  a typical FM signal used in the simulations. 
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A. Compression for TDOA Estimation 

It is well known [4] that for TDOA estimation, the FI is proportional to ∫
∞

∞−
dffSf 22 )( ,   

where )( fS is the Fourier transform of the source signal.  This view drives us to choose the DFT 

as our transform to allow discarding less useful frequency components.  The continuous-time sig-

nal model for two passively-received complex baseband signals having an unknown TDOA of ∆ 

is given by 
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where t0 is also an unknown parameter that can not be estimated, and wi(t) is complex bandlim-

ited white Gaussian noise.  In the frequency domain this model becomes 
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Now consider samples of (10) such that the noise samples give discrete-time white noise with 

variances 2
iσ  and the aliasing of signal ))2/(( 0 ∆+− tts  is negligible.  Taking the DFT of these 

samples (taking care to reduce leakage errors) leads to the frequency domain model  

12/,,12/,2/][)]2/(2exp[][][ 101 −+−−=+∆+−≈ NNNkkWt
N

jkkSkX K
π

,                (12) 

where the S[k] are the DFT coefficients (for negative and positive frequencies) of the samples of 

signal s(t) and W1[k] are the DFT coefficients of the noise.   

This is clearly a dual-sensor-critical problem.  Each data set is sensitive to changes in the 

time-of-arrival 2/0 ∆+t but neither sensor by itself can estimate 2/0 ∆+t , 0t  alone, or ∆  alone.  

In fact, even using both data sets it is impossible to estimate the nuisance parameter 0t .  Al-
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though this appears to be a two-parameter problem that might require a 2-D FI matrix, there really 

is only one thing that matters: sensitivity of the first sensor�s data to ∆  for a fixed 0t .   

Note that because the DFT is an orthogonal, but not orthonormal, transform the DFT noise 

variance is 2
1σN .  Using (6), the FI after multi-bit quantization becomes 
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This shows that the DFT coefficients get quadratically weighted by frequency.  For the 1-bit re-

sult application of (4) and (5) along the lines of those in [22] gives 
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Using (13) and (14) in (9) with the Lagrange optimization method produces our results.   Figure 2 

and Figure 3 show (for CRs of 4:1 and 8:1, respectively) the TDOA accuracy performance of our 

method (labeled �Fisher�) vs. the performance of standard MSE-optimum DFT-based transform 

compression (labeled �MSE�) as the SNR1 at sensor S1 is varied; the value of SNR2 at sensor S2 is 

fixed at 40 dB.  We have included the case where just the signal at S1 is compressed (labeled 

�S1�) as well as the case where the signals at S1 and S2 were both compressed (labeled �S1&S2�).  

The performance with no compression is labeled �w/o comp�.  Figure 4 and Figure 5 show results 

for the case of both SNR�s changing but set equal to each other.   

In all cases shown, our method provides better TDOA accuracy than the MSE-optimized 

method; at moderately high SNR our method is nearly the same as when no compression is used 

� even when the CR is 8:1.  Also note that when both sensor�s signals have been compressed at 

8:1, our method�s performance is only degraded a small amount where as the performance of the 

MSE-based method is severely degraded. 
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Figure 2: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 4:1; the SNR of the 
sensor S2 signal was 40 dB. 
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Figure 3: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 8:1; the SNR of the 
sensor S2 signal was 40 dB. 
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Figure 4: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 4:1; the SNR of the 
sensor S2 signal was set equal to SNR1. 
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Figure 5: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 8:1; the SNR of the 
sensor S2 signal was set equal to SNR1 

 



 11

B. Compression for FDOA Estimation 

It is well known [4] that for FDOA estimation, the FI is proportional to ∫
∞

∞−
dttst 22 )( .  This view 

drives us to choose the identity transform (which is an ON transform) to provide the ability to 

discard time components that contribute little to the FI.  Thus we will directly quantize the com-

plex-valued signal samples, using individual quantizers for the real and imaginary parts. The 

model for two passively-received signals having an unknown FDOA of ∆ is given by 
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where v0 is an unknown nuisance parameter that can not be estimated, and wi[n] is complex Gaus-

sian noise with variance of 2
iσ , with 2

1σ assumed known.  The model in (15) is mathematically 

identical to the TDOA model for the DFT transform in (12) and therefore we can use the previous 

results to immediately state that after multi-bit quantization the per-sample FI becomes 
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For the 1-bit result application of (4) and (5) along the lines of those in [22] gives 
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Using these results in (9) with the Lagrange optimization method produces the results shown in 

Figure 6 and Figure 7, which show results for the FDOA case.  In all cases shown, our method 

provides better FDOA accuracy than the MSE-optimized method.  



 12

10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16
FDOA Performance   SNR2 = 40 dB   CR=4:1

SNR1 (dB)

R
M

S
  F

D
O

A 
Er

ro
r (

m
H

z)
w/o comp      
MSE (S1)      
MSE (S1&S2)   
Fisher (S1)   
Fisher (S1&S2)

 

Figure 6: FDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 4:1; the SNR of the 
sensor S2 signal was 40 dB. 
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Figure 7: FDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 8:1; the SNR of the 
sensor S2 signal was 40 dB 
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IV.  Concluding Remarks 

As demonstrated in the example applications, the use of a distortion measure designed spe-

cifically for a specific estimation problem can lead to compression methods that outperform those 

using MSE-based distortion measures, especially when both sensor signals need to be compressed 

at high CRs.  While MSE distortion accurately captures the effect of the compression on the 

compressed signal�s SNR, it fails to capture the true impact of compression on the estimation 

accuracy.  This is similar to the scenario in image and audio compression, where MSE distortion 

fails to capture the impact of compression perceptual quality of the compressed data.  In those 

areas researchers have proposed effective distortion measures based on the psychology of percep-

tion.  Of course, others have used such inference-centric distortion measures before for quantizer 

design; but here we see the power of combining this with transform coding, which leads to some 

new insights: (i) the structure of the FI provides insight into the proper choice of transform 

choice, (ii) the choice of transform and the optimal bit allocation can be in conflict for different 

parameter estimations �  this is important as we extend to the case of multiple estimations, and 

(iii) it is possible to optimize FI-based measures within a specified operational compression 

framework.  There are some directions for which further work is needed:  (i) extension to the case 

of multiple estimates and decisions � although we have some preliminary results in this area [3], 

(ii) examination of the computational and implementation aspects; particularly, better models for 

the multi-bit post-compression FI, and (iii) generalization to the case when the FI depends on the 

parameter θ; at the end of Section III-A we have proposed what we think is the correct approach 

but have not yet fully explored its application. 
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Appendix:  Numerical Results for Gaussian Approximation 

We assume that we have a set of noise-free coefficients that lie in the range ±A. A noisy version 

of the coefficients having additive Gaussian noise of variance 2σ is quantized to b bits using a 

mid-step uniform quantizer with quantization cell size given by  

2/12 1

22

−
+

=∆ −B
A σ

. 

The true PDF can be numerically found via convolution of a Gaussian PDF with a uniform PDF 

and then plotted for various values of the peak SNR (PSNR) to be 22 /σAPSNR = .   Two such 

plots are given in Fig. A-1 for the case of 2 bit quantization at two values of PSNR.  The results 

provide motivation that at least for low PSNR the approximation seems to be valid even down to 

the lowest number of bits for which it is applied.  For higher PSNR the approximations at 2 bits 

will be poorer; nonetheless, we use the approximation.  For sensor problems the interest generally 

lies at low SNR and it is good that we have a better approximation in that range. 
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Figure A - 1 Numerical results for the true PDF compared to the approximation PDF for the case of 2 bit 
quantization for PSNR of  10 dB and 20 dB. 
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